Java 并发详解 ⑤:自旋锁

面试必备之深入理解自旋锁

自旋锁的思想是让一个线程在请求一个共享数据的锁时执行忙循环(自旋)一段时间,如果在这段时间内能获得锁,就可以避免进入阻塞状态

缺点: 如果某个线程持有锁的时间过长,就会导致其它等待获取锁的线程进入循环等待,消耗 CPU。使用不当会造成 CPU 使用率极高。

1. 实现

非公平不可重入:

当第一个线程 A 获取锁的时候,能够成功获取到,不会进入 while 循环,如果此时线程 A 没有释放锁,另一个线程 B 又来获取锁,此时由于不满足 CAS,所以就会进入 while 循环,不断判断是否满足 CAS,直到 A 线程调用 unlock 方法释放了该锁。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class SpinLock {
private AtomicReference<Thread> cas = new AtomicReference<Thread>();
public void lock() {
Thread current = Thread.currentThread();
// 利用 CAS
while (!cas.compareAndSet(null, current)) {
// DO nothing
}
}
public void unlock() {
Thread current = Thread.currentThread();
cas.compareAndSet(current, null);
}
}

2. 可重入

为了实现可重入锁,我们需要引入一个计数器,用来记录获取锁的线程数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class ReentrantSpinLock {
private AtomicReference<Thread> cas = new AtomicReference<Thread>();
private int count;
public void lock() {
Thread current = Thread.currentThread();
if (current == cas.get()) { // 如果当前线程已经获取到了锁,线程数增加一,然后返回
count++;
return;
}
// 如果没获取到锁,则通过CAS自旋
while (!cas.compareAndSet(null, current)) {
// DO nothing
}
}
public void unlock() {
Thread cur = Thread.currentThread();
if (cur == cas.get()) {
if (count > 0) {
// 如果大于0,表示当前线程多次获取了该锁,释放锁通过count减一来模拟
count--;
} else {
// 如果count==0,可以将锁释放,这样就能保证获取锁的次数与释放锁的次数是一致的了。
cas.compareAndSet(cur, null);
}
}
}
}

3. TicketLock

TicketLock 主要解决的是公平性的问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class TicketLock {
/**
* 服务号
*/
private AtomicInteger serviceNum = new AtomicInteger();
/**
* 排队号
*/
private AtomicInteger ticketNum = new AtomicInteger();
/**
* lock:获取锁,如果获取成功,返回当前线程的排队号,获取排队号用于释放锁. <br/>
*/
public int lock() {
int currentTicketNum = ticketNum.incrementAndGet();
while (currentTicketNum != serviceNum.get()) {
// Do nothing
}
return currentTicketNum;
}
/**
* unlock:释放锁,传入当前持有锁的线程的排队号 <br/>
*/
public void unlock(int ticketnum) {
serviceNum.compareAndSet(ticketnum, ticketnum + 1);
}
}

上面的实现方式是,线程获取锁之后,将它的排队号返回,等该线程释放锁的时候,需要将该排队号传入。但这样是有风险的,因为这个排队号是可以被修改的,一旦排队号被不小心修改了,那么锁将不能被正确释放。一种更好的实现方式如下:

缺点:
多处理器系统上,每个进程 / 线程占用的处理器都在读写同一个变量 serviceNum ,每次读写操作都必须在多个处理器缓存之间进行缓存同步,这会导致繁重的系统总线和内存的流量,大大降低系统整体的性能

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public class TicketLockV2 {
/**
* 服务号
*/
private AtomicInteger serviceNum = new AtomicInteger();
/**
* 排队号
*/
private AtomicInteger ticketNum = new AtomicInteger();
/**
* 新增一个ThreadLocal,用于存储每个线程的排队号
*/
private ThreadLocal<Integer> ticketNumHolder = new ThreadLocal<Integer>();
public void lock() {
int currentTicketNum = ticketNum.incrementAndGet();

// 获取锁的时候,将当前线程的排队号保存起来
ticketNumHolder.set(currentTicketNum);
while (currentTicketNum != serviceNum.get()) {
// Do nothing
}
}
public void unlock() {
// 释放锁,从ThreadLocal中获取当前线程的排队号
Integer currentTickNum = ticketNumHolder.get();
serviceNum.compareAndSet(currentTickNum, currentTickNum + 1);
}
}

4. CLHLock

CLH 锁是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,它不断轮询前驱的状态,如果发现前驱释放了锁就结束自旋,获得锁。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/**
* CLH的发明人是:Craig,Landin and Hagersten。
* 代码来源:http://ifeve.com/java_lock_see2/
*/
public class CLHLock {
/**
* 定义一个节点,默认的lock状态为true
*/
public static class CLHNode {
private volatile boolean isLocked = true;
}
/**
* 尾部节点,只用一个节点即可
*/
private volatile CLHNode tail;
private static final ThreadLocal<CLHNode> LOCAL = new ThreadLocal<CLHNode>();
private static final AtomicReferenceFieldUpdater<CLHLock, CLHNode> UPDATER =
AtomicReferenceFieldUpdater.newUpdater(CLHLock.class, CLHNode.class, "tail");
public void lock() {
// 新建节点并将节点与当前线程保存起来
CLHNode node = new CLHNode();
LOCAL.set(node);

// 将新建的节点设置为尾部节点,并返回旧的节点(原子操作)
// 这里旧的节点实际上就是当前节点的前驱节点
CLHNode preNode = UPDATER.getAndSet(this, node);
if (preNode != null) {
// 前驱节点不为null表示当锁被其他线程占用
// 通过不断轮询判断前驱节点的锁标志位等待前驱节点释放锁
while (preNode.isLocked) {
}
preNode = null;
LOCAL.set(node);
}
// 如果不存在前驱节点,表示该锁没有被其他线程占用,则当前线程获得锁
}
public void unlock() {
// 获取当前线程对应的节点
CLHNode node = LOCAL.get();
// 如果tail节点等于node,则将tail节点更新为null,同时将node的lock状态置为false,表示当前线程释放了锁
if (!UPDATER.compareAndSet(this, node, null)) {
node.isLocked = false;
}
node = null;
}
}

5. MCSLock

MCSLock 则是对本地变量的节点进行循环。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/**
* MCS:发明人名字John Mellor-Crummey和Michael Scott
* 代码来源:http://ifeve.com/java_lock_see2/
*/
public class MCSLock {
/**
* 节点,记录当前节点的锁状态以及后驱节点
*/
public static class MCSNode {
volatile MCSNode next;
volatile boolean isLocked = true;
}
private static final ThreadLocal<MCSNode> NODE = new ThreadLocal<MCSNode>();
// 队列
@SuppressWarnings("unused")
private volatile MCSNode queue;
// queue更新器
private static final AtomicReferenceFieldUpdater<MCSLock, MCSNode> UPDATER =
AtomicReferenceFieldUpdater.newUpdater(MCSLock.class, MCSNode.class, "queue");
public void lock() {
// 创建节点并保存到 ThreadLocal 中
MCSNode currentNode = new MCSNode();
NODE.set(currentNode);
// 将queue设置为当前节点,并且返回之前的节点
MCSNode preNode = UPDATER.getAndSet(this, currentNode);
if (preNode != null) {
// 如果之前节点不为null,表示锁已经被其他线程持有
preNode.next = currentNode;
// 循环判断,直到当前节点的锁标志位为false
while (currentNode.isLocked) {
}
}
}
public void unlock() {
MCSNode currentNode = NODE.get();
// next为null表示没有正在等待获取锁的线程
if (currentNode.next == null) {
// 更新状态并设置queue为null
if (UPDATER.compareAndSet(this, currentNode, null)) {
// 如果成功了,表示queue==currentNode,即当前节点后面没有节点了
return;
} else {
// 如果不成功,表示queue!=currentNode,即当前节点后面多了一个节点,表示有线程在等待
// 如果当前节点的后续节点为null,则需要等待其不为null(参考加锁方法)
while (currentNode.next == null) {
}
}
} else {
// 如果不为null,表示有线程在等待获取锁,此时将等待线程对应的节点锁状态更新为false,同时将当前线程的后继节点设为null
currentNode.next.isLocked = false;
currentNode.next = null;
}
}
}

6. CLHLock 和 MCSLock 比较

  • 都是基于链表,不同的是 CLHLock 是基于隐式链表,没有真正的后续节点属性,MCSLock 是显示链表,有一个指向后续节点的属性
  • 将获取锁的线程状态借助节点(node)保存,每个线程都有一份独立的节点,这样就解决了 TicketLock 多处理器缓存同步的问题